Belenios: a simple private and verifiable electronic voting system

Authors : Véronique Cortier, Pierrick Gaudry, Stephane Glondu

CNRS. Inria. Univ. Lorraine. France

Arnaud Labourel (AMU, CNRS, LIS)

istributed team

ALGOrithms seminar

Introduction

Part II: the cryptographic tools

Previously, on the DALGO seminar, we have seen:

- the electronic voting system Belenios
- the global ideas behind it
- the properties guaranteed by the protocol: privacy and verifiability

Global ideas behind Belenios

Cryptographic tools used by Belenios

- Partially homomorphic ElGamal encryption scheme used to encrypt the votes
- Cryptographic hash function used for signatures and ZKP
- Non-interactive Zero-Knowledge Proofs (ZPK) used
 - by voters to prove validity of votes
 - by trustees to prove the correct decryption of the election result
- Schnorr signature scheme used to sign the ballot to prove the legitimacy of the vote
- Pedersen's threshold secret sharing scheme used by trustees s.t. no single authority has the private key of the election

ElGamal encryption scheme

ElGamal encryption scheme

- Asymmetric key encryption algorithm :
 - key e to encode
 - key d to decode
 - computationally intractable to decrypt encrypted an encrypted message without knowing d
- Created in 1985 by ElGamal
- Based on cyclic groups
- Security based on the difficulty of solving discrete logarithm in the chosen group

Group

Definition of a group

A group (G,*) is a pair composed of a set G and an operation $*: G \times G \to G$ s.t.:

- * is associative (useful for fast exponentiation)
- there an identity element $i : \forall x, i * x = x = x * i$ (useful for defining an inverse)
- every element x has an inverse x^{-1} s.t. $x * x^{-1} = i$ (useful for defining $x/y = x * y^{-1}$)

For $x \in S$ and $y \in \mathbb{N}$, we define:

$$x^y = \underbrace{x * x * \cdots * x}_{y \text{ times}}$$

Cyclic group

Definition of a cyclic group

A group (G, *) of order q for which there is a generator g, i.e., an element of the group s.t.:

$$G = \{i = g^0, g^1, g^2, \dots, g^{q-1}\}$$

Examples of cyclic groups:

- integers modulo *n* with multiplication for prime *n*
- points of an elliptic curve on a finite field of prime order

Group of integers $\pmod{19}$ with g = 2

ElGamal encryption scheme

Public information (part of the public key)

(G,q,g) with:

- G a cyclic group G of order q
- g a generator of G

Decryption private key d

An integer d randomly chosen from $\{1, \ldots, q-1\}$.

Encryption public key e

$$e = g^d$$

ElGamal encryption scheme

Encryption of a vote $v \in \{0, 1\}$

- Choose a random integer r from $\{1, \ldots, q-1\}$

Decryption of a message (a, b)

- Ompute $b/a^d = e^r g^v/(g^r)^d = (g^d)^r g^v/g^{rd} = g^v$
- Ompute $v = dec_d(a, b)$ (v = 1 if $b/a^d = g$ and 0 otherwise).

$$(a^d)^{-1}$$
 can be computed as a^{q-d} since $(a^d)*a^{q-d}=g^{rd}*g^{r(q-d)}=g^{rq}=(g^q)^r=i^r=i$

Homomorphic property of ElGamal encryption scheme

Recall that $enc_e(v, r) = (g^r, e^r g^v)$. We have :

$$\begin{aligned} \operatorname{enc}_{\boldsymbol{e}} \left(\sum_{i=1}^n \boldsymbol{v}_i, \sum_{i=1}^n \boldsymbol{r}_i \right) &= \left(g^{\sum_{i=1}^n \boldsymbol{r}_i}, \boldsymbol{e}^{\sum_{i=1}^n \boldsymbol{r}_i} g^{\sum_{i=1}^n \boldsymbol{v}_i} \right) \\ &= \left(\prod_{i=1}^n g^{\boldsymbol{r}_i}, \prod_{i=1}^n \boldsymbol{e}^{\boldsymbol{r}_i} g^{\boldsymbol{v}_i} \right) \\ &= \prod_{i=1}^n \operatorname{enc}_{\boldsymbol{e}}(\boldsymbol{v}_i, \boldsymbol{r}_i) \end{aligned}$$

Some assumptions must hold on the chosen cyclic group G of order q to achieve security :

Computational Diffie-Hellman assumption (CDH)

Given (g,g^a,g^b) for a randomly chosen generator g of G and random $a,b\in\{0,\ldots,q-1\}$, it is computationally intractable to compute the value g^{ab}

If CDH holds, then the encryption function is one-way (computationally intractable to decrypt encrypted messages without the decryption key)

Discrete logarithm assumption

Given a and b, it is computationally intractable to compute the value x s.t. $a^x = b$.

If computing the discrete logarithm in G is easy, then the CDH problem could be solved easily:

Given (g, g^a, g^b) :

- compute a from g and g^a
- compute $g^{ab} = (g^b)^a$

It is not known if this is the only method and so if the discrete log assumption is equivalent to the CDH assumption.

Best known algorithms for discrete logarithm are super-polynomial in the size of the input (with **classic model** of computation).

This is not true for quantum computers: variant of Shor's algorithm with polynomial (in the size of input) complexity.

⇒ ElGamal scheme is not quantum-resistant

The fact that the encryption function is one-way does not imply that an adversary cannot learn information on the content of the encrypted messages.

PPTA: Probabilistic, Polynomial-Time Algorithm

Semantic security

Any PPTA that is given enc(m), and |m|, cannot determine any partial information on m with probability non-negligibly higher than all other PPTA's that only have access to |m|.

For semantic security, a stronger assumption than CDH is needed.

Decisional Diffie-Hellman assumption (DDH)

The following two probability distributions are computationally indistinguishable (with a PPTA in $\log q$):

- (g^a, g^b, g^{ab}) where a and b are randomly and independently chosen.
- (g^a, g^b, g^c) where a, b and c are randomly and independently chosen.

DDH is considered stronger than CDH: If CDH is false then one can compute with a PPTA g^{ab} from g^a, g^b , and so DDH is false.

DDH false on multiplicative group

Euler's criterion

Given a prime p and a an integer coprime to p

$$a^{\frac{p-1}{2}} \equiv \begin{cases} 1 \pmod{p} & \text{if there is } x \text{ s.t. } a \equiv x^2 \pmod{p}, \\ -1 \pmod{p} & \text{if there is no such integer.} \end{cases}$$

 \Rightarrow easy to compute for g^y and so determine if y is odd or even.

Given g^a , g^b and g^{ab} , one can compare the least significant bit of a, b and ab, and distinguish g^{ab} from a random group element.

Group used by Belenios

Group for which Discrete log, CDH, DDH are assumed true.

Schnorr group

- subgroup of the multiplicative group of integers modulo p
- p, q primes and r integer s.t. p = qr + 1
- $g = h^r \pmod{p}$ with h s.t. $h^r \not\equiv 1 \pmod{p}$

BELENIOS-2048

 $\begin{array}{lll} \mathbf{p} &=&& 20694785691422546 \\ && 401013643657505008064922989295751104097100884787057374219242 \\ && 717401922237254497684338129066633138078958404960054389636289 \\ && 79693930387739057228036059737494276713767776188985989872733865 \\ && 649081167099310535867780980030790491654063777173764198678527 \\ && 2734744763418356003569830913144284561709111000786737307333 \\ && 564123971732897913240474578834468260652327974647951137672658 \\ && 63358218061378220736688600552671853633386088796882120769432 \\ && 366149491002923444346373222145884100586421050242120365433561 \\ && 201320481118852408731077014151666200162313177169372189248078 \\ && 507711827842317498073276598828852169183103256801627880719 \end{array} \end{array}$

209227687703532399932712287657378364916510075318787663274146
353219320285676155269678799694668298749389095083896573425601
900601068477164491735474137285110410458631314511781646755400
527402289846363675821061591841998253431518974065818688651151386
56383486363578210615491841998253431518974065818688651151386
576101388822155990160425288436039398333662772848306593138
406010231675095763777982665110506852406635076697764025346253
775177711481490920456600205478127054728238140972518639858343
115700568353955534237814755824918062056686803774508460627

Group $\pmod{47}$ with g = 4 and q = 23

Partial conclusion

Partial conclusion

We have seen the ELGamal encryption scheme used by Belenios

Next week, we will see:

- more cryptographic tools: Cryptographic hash function, Zero-Knowledge Proofs, Schnorr signature scheme, Pedersen's threshold secret sharing scheme
- more details on how Belenios works
- more details on how it is implemented