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Introduction
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It always takes longer than expected

Hofstadter’s Law [Hofstadter 1979]
It always takes longer than you expect, even when you
take into account Hofstadter’s Law.
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Previously on DALGO seminar

We have seen:
the electronic voting system Belenios
the global ideas behind it
the properties guaranteed by the protocol: privacy
and verifiability
a cryptographic tool: ElGamal encryption scheme
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On this DALGO seminar

Cryptographic hash function
used for signatures and ZKP
Non-interactive Zero-Knowledge Proofs (ZPK) used

by voters to prove validity of votes and avoid ballot
stuffing
by trustees to prove the correct decryption of the election
result

Schnorr signature scheme
used to sign the ballot
Pedersen’s threshold secret sharing scheme
used by trustees s.t. no single authority has the
private key of the election
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Cryptographic hash
function
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Cryptographic hash function
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SHA256 used by Belenios

Produce hash of 256 bits
Published in 2001 by the NIST
Based on Merkle–Damgård construction with
Davies–Meyer compression function

Rough ideas behind SHA256
Iteratively use a compression function that outputs
256 bits from a block of 512 bits and the output of
the previous computation
The compression function is composed of numerous
iterations of bitwise function on the block
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Merkle–Damgård construction
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Compression function
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Expansion function
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Iterated function

Wt

KtCh
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Σ1

Σ0
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A B C D E F G H

� : addition mod 232

Ch(&, ',() = (& ∧ ')⊕ (¬& ∧ ()
Ma(",#, $) = (" ∧ #)⊕ (" ∧ $)⊕ (# ∧ $)
Σ0(") = ("≫2)⊕ ("≫13)⊕ ("≫22)

Σ1(&) = (&≫6)⊕ (&≫11)⊕ (&≫25)
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Non-interactive
Zero-Knowledge

Proofs
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Non-interactive Zero-Knowledge Proofs
(ZKP)
Used

by voters to prove validity of votes (for instance
prove that an encrypted ballot encode a value inside
some specific set)
by trustees to prove that they know their secret key
and for the correct decryption of the election result

Three kind of proofs:
that a discrete logarithm belongs to some finite set
of knowledge a discrete algorithm
of correct decryption
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Intuition behind ZKP
Victor is color-blind and Peggy wants to prove him
that she can distinguish two different colored balls
(which he cannot).
Victor takes the ball and choose to switch them or
not behind his back (without Peggy knowing) and
then shows them to Peggy.
Peggy has to guess if Victor has switched or not the
balls and then repeat the process multiple times.
The probability of randomly succeeded at guessing
all switchs/non-switches approaches zero
(soundness)
Victor should become convinced (completeness) that
the balls are indeed differently colored.
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Interactive ZKP

A prover 1must convince a verifier 7 that a statement is
true. In order to prove the statement, it knows a secret
but it does not want to divulge it.

Zero-knowledge proof of knowledge
Special case when the statement consists only of the fact
that the prover 1 possesses the secret information.
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Interactive ZKP

Prover
P

Verifier
V

send commitment m

send response r

send challenge c

accept or refuse
the proof

statement
do not learn

anything apart

from the fact

the statement
is true

secret
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Desired properties of a ZKP protocol

Completeness: 7 accept if 1 has the secret and
follows the protocol
Zero-Knowledge: 7 only learns that 1 knows the
secret
Soundness: if 1 does not know the secret then 7
must reject the proof with high probability
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ZKP for knowledge of a logarithm

Public context
1 and 2 agrees on a cyclic group ( of order R and the
public key Q of 1

1must convince 7 that it knows its secret key T s.t. Q = HT

Three rounds of communications
1 1→ 7 : 1 pick a random O and sendsN = HO

2 7→ 1 : 7 pick a random D ∈ [0, R− 1] and sends D
3 1→ 7 : 1 computes S = O+ TD (mod R) and sends S

7 accepts iffN = HSQ−D
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Proof of this ZPK
Proof of completeness:
If the protocol goes as expected, we have :
HSQ−D = HO+TDH−TD = HO = N
⇒ 7 accepts the proof
Proof of Zero-Knowledge:
Proved by simulation: a honest verifier can produce valid
transcripts (with the same distribution for the challenge)
that are indistinguishable from a real one (without
knowing the secret).
Randomly pick D and S: the transcript (N = HSQ−D, D, S) is
valid and indistinguishable from a real one sinceN and D
are uniform random (N is a uniform random since its
discrete log is uniform random)
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Proof of this ZPK
Proof of soundness:
Sufficient to show a “special-soundness” property
Assuming two distinct valid transcripts with the same
commitment, then we can deduce (in polynomial time)
the secret from those two transcripts.

Let (N, D, S) and (N, D′, S′) be two distinct valid transcripts.
ThenN = HSQ−D = HS

′
Q−D

′, and

QD
′−D = HT(D

′−D) = HS
′−S

Since the transcripts are distinct, then D 6= D′ (otherwise
we would also have S = S′), and we deduce
T = (S′ − S)/(D′ − D) mod R.
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Non-interactive ZKP

We can use the Fiat-Shamir technique to reduce the
number of rounds.
Idea: replace the random challenge D from 7 by a value
generated by a hash function agreed upon in advance.
1must convince 7 that it knows some secret T s.t. Q = HT

1 1 pick a random O
Then compute D = I(HT ‖ HO) and S = O− TD mod R
and sends (S, D) to 1 (with ‖ the concatenation)

2 V accepts (S, D) with Q = HT iff D = I(Q ‖ ") where
" = HSQD.
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Schnorr signature
scheme
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Schnorr signature scheme
Used in Belenios, by voters to sign their vote (proving the
legitimacy of the ballot).

designed by Schnorr in 1989.
uses a group ( for which the discrete logarithm is
hard to solve
uses a cryptographic hash function I
ZKP of the knowledge of a discrete logarithm

Private signing key T
An integer T randomly chosen from {1, . . . , R− 1}.

Public verification key Q
Q = HT
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Schnorr signature scheme
Idea: Use a non-interactive ZKP of a discrete logarithm
with a message as part of the input of the hash to obtain
a digital signature scheme.

Public information
a group ( of order R
a cryptographic hash function I

Signing a message.
1 Choose a random integer O from {1, . . . , R− 1}
2 Compute D = I(. ‖ HO) with ‖ the concatenation
3 Produce the signature of.:

sign(.) = (O− TD (mod R), D)
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Schnorr signature scheme

Verifying a signed message.
Given a message., a signature (S, D) and verifying key Q :

1 compute B = HSQD

2 if D = I(. ‖ B) then accept the signature

A correctly signed message will verify correctly.
Recall that S = O− TD (mod R).
We have B = HSWD = HO−TD (mod R)(HT)D = HO.

Assumptions for security
intractability of discrete logarithm
I is collision resistant
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Pedersen’s threshold
secret sharing scheme
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Pedersen’s threshold sharing scheme
Used to share the private key of the election between
several trustees s.t. the key is safe if few trustees are
compromised.

Rough idea of the scheme
Each trustee generate a secret (intuitively its part of
the private decryption key)
Each trustee will generate a polynomial of degree U
which has a value equal to the secret for Y = 0

Each trustee share a distinct point of the polynomial
to each other trustee
With U+ 1 trustees (U+ 1 points for each
polynomial), it is possible to decrypt
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Sharing a secret with a polynomial
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Goal: finding a polynomial of degree U passing through
U+ 1 points.
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Sharing a secret with a polynomial

0 1 2 3 4 5 6 7

1.0

0.5

0.0

0.5

1.0

The secret is the value of the polynomial for Y = 0
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Pedersen’s threshold secret sharing
scheme

Each trustee 5J (for 1 ≤ J ≤ O) has:
a secret TJ
its part of the public encryption key FJ = HTJ

The public global encryption key is & =
∏O

J=1 FJ
The virtual decryption key is % =

∑O
J=1 TJ but only

U+ 1 trustees are needed to decrypt.
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First step of the algorithm
Each trustee 5J randomly generates a polynomial of
degree U in ZR
1J(Y) = DJ,0 + DJ,1Y+ DJ,2Y2 + · · ·+ DJ,UYU

The secret of 5J is TJ := DJ,0 = 1J(0)
The share of the secret key of 5K is EK :=

∑
J∈2 1J(K)

5J broadcasts BJ,K = HDJ,K for 1 ≤ K ≤ U to everyone
5J sends 1J(K) to 5K.

⇒ Each 5K can check values sent by 5J with:
H1J(K) = H

∑U
L=0 DJ,L.K

L
=
∏U

L=0 B
KL
J,L

Malicious trustees (sending values that does not check
out or falsely complaining about a valid trustee) are black
listed (2 set of indexes of non-black listed trustees).
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Verification keys/encryption
Verification keys
Each 5K shares its verification key:

WK =
∏
J∈2

H1J(K) = H
∑

J∈2 1J(K) = HEK

Somehow proves that it knows the values 1J(K) that can
be checked by everyone knowing the BJ,L since:

WK =
∏
J∈2

H1J(K) =
∏
J∈2

U∏
L=0

BK
L

J,L

Encryption
Each message is encrypted with key & =

∏
J∈2 FJ

Encrypted voteN: (3 := HS, 4 := &S.N) with random S
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Decryption

For an encrypted message (3 := HS, 4 := &S.HW), 5J
outputs a decryption share:
(J,%J := 3EJ) with EJ :=

∑
J∈2 1J(K)

For decryption, we assume that we have:
an encrypted message (3, 4)
U+ 1 decryption shares (K,%K) for
K ∈ * := {J1, . . . , JU+1}

The algorithms outputs:

N = 4.

∏
K∈*

%`KK

−1
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Lagrange coefficients

Lagrange coeffients

`K :=
L=U∏

L=0,L6=K

YL
YL − YK

Lagrange interpolation
Given U+ 1 points (YJ, ZJ) of a polynomial curve 1, we can
compute:

1(0) =
U∑
K=0

ZK.`K
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Lagrange coefficients

We compute Lagrange coefficients for points (J,1K(J)):

`K :=
∏

L∈*\{K}

L
L− K

For any polynomials 1, we have:

1(0) =
U∑
K=0

1(K).`K
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Completeness of the scheme
Consider the encrypted message (3, 4) = (HS, &S.N)
We have:∑

K∈*

`KEK =
∑
K∈*

`K

∑
J∈2

1J(K)

 =
∑
J∈2

∑
K∈*

`K1J(K)

 =
∑
J∈2

1J(0)

∏
K∈*

%`KK =
∏
K∈*

(3EK)`K = 3
∑

K∈* `KEK = 3%

Hence the algorithm outputs

4.

∏
K∈*

%`KK

−1

= 4.3−% = H%S.N.H−%S = N
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Vote result
In belenios, we compute the result of the election which is
the product of the encrypted ballots:

res =

(
O∏
J=1

HSJ,
O∏
J=1

FSJHWJ
)

= (H
∑O

J=1 SJ, F
∑O

J=1 SJH
∑O

J=1 WJ)

= encF

(
O∑
J=1

WJ,
O∑
J=1

SJ

)

After decryption, we obtain H
∑O

J=1 WJ and we can compute∑O
J=1 WJ since the discrete logarithm is tractable for small

values.
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Conclusion ?
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Conclusion ?

We have seen all the cryptographic tools used by Belenios.

Cryptographic hash function
Non-interactive Zero-Knowledge Proofs (ZPK)
Schnorr signature scheme
Pedersen’s threshold secret sharing scheme

Maybe on a next DALGO seminar, we will see more details
on how it is implemented.
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